Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
2.
Artigo em Inglês | MEDLINE | ID: mdl-38513838

RESUMO

BACKGROUND: Millions of people are exposed to landscape fire smoke (LFS) globally, and inhalation of LFS particulate matter (PM) is associated with poor respiratory and cardiovascular outcomes. However, how LFS affects respiratory and cardiovascular function is less well understood. OBJECTIVE: We aimed to characterize the pathophysiologic effects of representative LFS airway exposure on respiratory and cardiac function and on asthma outcomes. METHODS: LFS was generated using a customized combustion chamber. In 8-week-old female BALB/c mice, low (25 µg/m3, 24-hour equivalent) or moderate (100 µg/m3, 24-hour equivalent) concentrations of LFS PM (10 µm and below [PM10]) were administered daily for 3 (short-term) and 14 (long-term) days in the presence and absence of experimental asthma. Lung inflammation, gene expression, structural changes, and lung function were assessed. In 8-week-old male C57BL/6 mice, low concentrations of LFS PM10 were administered for 3 days. Cardiac function and gene expression were assessed. RESULTS: Short- and long-term LFS PM10 airway exposure increased airway hyperresponsiveness and induced steroid insensitivity in experimental asthma, independent of significant changes in airway inflammation. Long-term LFS PM10 airway exposure also decreased gas diffusion. Short-term LFS PM10 airway exposure decreased cardiac function and expression of gene changes relating to oxidative stress and cardiovascular pathologies. CONCLUSIONS: We characterized significant detrimental effects of physiologically relevant concentrations and durations of LFS PM10 airway exposure on lung and heart function. Our study provides a platform for assessment of mechanisms that underpin LFS PM10 airway exposure on respiratory and cardiovascular disease outcomes.

3.
Nat Commun ; 14(1): 7349, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963864

RESUMO

Toll-like receptor 7 (TLR7) is known for eliciting immunity against single-stranded RNA viruses, and is increased in both human and cigarette smoke (CS)-induced, experimental chronic obstructive pulmonary disease (COPD). Here we show that the severity of CS-induced emphysema and COPD is reduced in TLR7-deficient mice, while inhalation of imiquimod, a TLR7-agonist, induces emphysema without CS exposure. This imiquimod-induced emphysema is reduced in mice deficient in mast cell protease-6, or when wild-type mice are treated with the mast cell stabilizer, cromolyn. Furthermore, therapeutic treatment with anti-TLR7 monoclonal antibody suppresses CS-induced emphysema, experimental COPD and accumulation of pulmonary mast cells in mice. Lastly, TLR7 mRNA is increased in pre-existing datasets from patients with COPD, while TLR7+ mast cells are increased in COPD lungs and associated with severity of COPD. Our results thus support roles for TLR7 in mediating emphysema and COPD through mast cell activity, and may implicate TLR7 as a potential therapeutic target.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Animais , Camundongos , Triptases/genética , Receptor 7 Toll-Like/genética , Imiquimode , Pulmão , Enfisema Pulmonar/genética , Nicotiana , Camundongos Endogâmicos C57BL
4.
Am J Physiol Lung Cell Mol Physiol ; 325(3): L385-L398, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37463835

RESUMO

Influenza A virus (IAV) infections are increased during pregnancy especially with asthma as a comorbidity, leading to asthma exacerbations, secondary bacterial infections, intensive care unit admissions, and mortality. We aimed to define the processes involved in increased susceptibility and severity of IAV infections during pregnancy, especially with asthma. We sensitized mice to house dust mite (HDM), induced pregnancy, and challenged with HDM to induce allergic airway disease (AAD). At midpregnancy, we induced IAV infection. We assessed viral titers, airway inflammation, lung antiviral responses, mucus hypersecretion, and airway hyperresponsiveness (AHR). During early IAV infection, pregnant mice with AAD had increased mRNA expression of the inflammatory markers Il13 and IL17 and reduced mRNA expression of the neutrophil chemoattractant marker Kc. These mice had increased mucous hyperplasia and increased AHR. miR155, miR574, miR223, and miR1187 were also reduced during early infection, as was mRNA expression of the antiviral ß-defensins, Bd1, Bd2, and Spd and IFNs, Ifnα, Ifnß, and Ifnλ. During late infection, Il17 was still increased as was eosinophil infiltration in the lungs. mRNA expression of Kc was reduced, as was neutrophil infiltration and mRNA expression of the antiviral markers Ifnß, Ifnλ, and Ifnγ and Ip10, Tlr3, Tlr9, Pkr, and Mx1. Mucous hyperplasia was still significantly increased as was AHR. Early phase IAV infection in pregnancy with asthma heightens underlying inflammatory asthmatic phenotype and reduces antiviral responses.NEW & NOTEWORTHY Influenza A virus (IAV) infection during pregnancy with asthma is a major health concern leading to increased morbidity for both mother and baby. Using murine models, we show that IAV infection in pregnancy with allergic airway disease is associated with impaired global antiviral and antimicrobial responses, increased lung inflammation, mucus hypersecretion, and airway hyperresponsiveness (AHR). Targeting specific ß-defensins or microRNAs (miRNAs) may prove useful in future treatments for IAV infection during pregnancy.


Assuntos
Asma , Vírus da Influenza A , Influenza Humana , Transtornos Respiratórios , Hipersensibilidade Respiratória , beta-Defensinas , Gravidez , Feminino , Camundongos , Animais , Humanos , Citocinas/metabolismo , Hiperplasia/patologia , Asma/patologia , Pulmão/metabolismo , Hipersensibilidade Respiratória/patologia , Influenza Humana/patologia , Antivirais/uso terapêutico , RNA Mensageiro , Pyroglyphidae , Modelos Animais de Doenças
5.
Respir Res ; 24(1): 32, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36698141

RESUMO

Lung transcriptomics studies in asthma have provided valuable information in the whole lung context, however, deciphering the individual contributions of the airway and parenchyma in disease pathogenesis may expedite the development of novel targeted treatment strategies. In this study, we performed transcriptomics on the airway and parenchyma using a house dust mite (HDM)-induced model of experimental asthma that replicates key features of the human disease. HDM exposure increased the expression of 3,255 genes, of which 212 were uniquely increased in the airways, 856 uniquely increased in the parenchyma, and 2187 commonly increased in both compartments. Further interrogation of these genes using a combination of network and transcription factor enrichment analyses identified several transcription factors that regulate airway and/or parenchymal gene expression, including transcription factor EC (TFEC), transcription factor PU.1 (SPI1), H2.0-like homeobox (HLX), metal response element binding transcription factor-1 (MTF1) and E74-like factor 4 (ets domain transcription factor, ELF4) involved in controlling innate immune responses. We next assessed the effects of inhibiting lung SPI1 responses using commercially available DB1976 and DB2313 on key disease outcomes. We found that both compounds had no protective effects on airway inflammation, however DB2313 (8 mg/kg) decreased mucus secreting cell number, and both DB2313 (1 mg/kg) and DB1976 (2.5 mg/kg and 1 mg/kg) reduced small airway collagen deposition. Significantly, both compounds decreased airway hyperresponsiveness. This study demonstrates that SPI1 is important in HDM-induced experimental asthma and that its pharmacological inhibition reduces HDM-induced airway collagen deposition and hyperresponsiveness.


Assuntos
Asma , Pyroglyphidae , Animais , Humanos , Transcriptoma , Pulmão/metabolismo , Colágeno/metabolismo , Fatores de Transcrição/metabolismo , Modelos Animais de Doenças
6.
Eur Respir Rev ; 31(165)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35831008

RESUMO

Workers in the mining and construction industries are at increased risk of respiratory and other diseases as a result of being exposed to harmful levels of airborne particulate matter (PM) for extended periods of time. While clear links have been established between PM exposure and the development of occupational lung disease, the mechanisms are still poorly understood. A greater understanding of how exposures to different levels and types of PM encountered in mining and construction workplaces affect pathophysiological processes in the airways and lungs and result in different forms of occupational lung disease is urgently required. Such information is needed to inform safe exposure limits and monitoring guidelines for different types of PM and development of biomarkers for earlier disease diagnosis. Suspended particles with a 50% cut-off aerodynamic diameter of 10 µm and 2.5 µm are considered biologically active owing to their ability to bypass the upper respiratory tract's defences and penetrate deep into the lung parenchyma, where they induce potentially irreversible damage, impair lung function and reduce the quality of life. Here we review the current understanding of occupational respiratory diseases, including coal worker pneumoconiosis and silicosis, and how PM exposure may affect pathophysiological responses in the airways and lungs. We also highlight the use of experimental models for better understanding these mechanisms of pathogenesis. We outline the urgency for revised dust control strategies, and the need for evidence-based identification of safe level exposures using clinical and experimental studies to better protect workers' health.


Assuntos
Pneumopatias , Doenças Profissionais , Exposição Ocupacional , Carvão Mineral/efeitos adversos , Poeira/análise , Humanos , Pulmão , Pneumopatias/induzido quimicamente , Pneumopatias/etiologia , Doenças Profissionais/induzido quimicamente , Doenças Profissionais/etiologia , Exposição Ocupacional/efeitos adversos , Qualidade de Vida , Dióxido de Silício/efeitos adversos
7.
J Allergy Clin Immunol ; 150(4): 817-829.e6, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35643377

RESUMO

BACKGROUND: Asthma and chronic obstructive pulmonary disease (COPD) are common chronic respiratory diseases, and some patients have overlapping disease features, termed asthma-COPD overlap (ACO). Patients characterized with ACO have increased disease severity; however, the mechanisms driving this have not been widely studied. OBJECTIVES: This study sought to characterize the phenotypic and transcriptomic features of experimental ACO in mice induced by chronic house dust mite antigen and cigarette smoke exposure. METHODS: Female BALB/c mice were chronically exposed to house dust mite antigen for 11 weeks to induce experimental asthma, cigarette smoke for 8 weeks to induce experimental COPD, or both concurrently to induce experimental ACO. Lung inflammation, structural changes, and lung function were assessed. RNA-sequencing was performed on separated airway and parenchyma lung tissues to assess transcriptional changes. Validation of a novel upstream driver SPI1 in experimental ACO was assessed using the pharmacological SPI1 inhibitor, DB2313. RESULTS: Experimental ACO recapitulated features of both asthma and COPD, with mixed pulmonary eosinophilic/neutrophilic inflammation, small airway collagen deposition, and increased airway hyperresponsiveness. Transcriptomic analysis identified common and distinct dysregulated gene clusters in airway and parenchyma samples in experimental asthma, COPD, and ACO. Upstream driver analysis revealed increased expression of the transcription factor Spi1. Pharmacological inhibition of SPI1 using DB2313, reduced airway remodeling and airway hyperresponsiveness in experimental ACO. CONCLUSIONS: A new experimental model of ACO featuring chronic dual exposures to house dust mite and cigarette smoke mimics key disease features observed in patients with ACO and revealed novel disease mechanisms, including upregulation of SPI1, that are amenable to therapy.


Assuntos
Asma , Eosinofilia , Doença Pulmonar Obstrutiva Crônica , Hipersensibilidade Respiratória , Animais , Feminino , Camundongos , RNA , Fatores de Transcrição , Transcriptoma
8.
Immunol Cell Biol ; 100(4): 235-249, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35175629

RESUMO

Increased inflammasome responses are strongly implicated in inflammatory diseases; however, their specific roles are incompletely understood. Therefore, we sought to examine the roles of nucleotide-binding oligomerization domain-like receptor (NLR) family, pyrin domain-containing 3 (NLRP3) and absent in melanoma-2 (AIM2) inflammasomes in cigarette smoke-induced inflammation in a model of experimental chronic obstructive pulmonary disease (COPD). We targeted NLRP3 with the inhibitor MCC950 given prophylactically or therapeutically and examined Aim2-/- mice in cigarette smoke-induced experimental COPD. MCC950 treatment had minimal effects on disease development and/or progression. Aim2-/- mice had increased airway neutrophils with decreased caspase-1 levels, independent of changes in lung neutrophil chemokines. Suppressing neutrophils with anti-Ly6G in experimental COPD in wild-type mice reduced neutrophils in bone marrow, blood and lung. By contrast, anti-Ly6G treatment in Aim2-/- mice with experimental COPD had no effect on neutrophils in bone marrow, partially reduced neutrophils in the blood and had no effect on neutrophils or neutrophil caspase-1 levels in the lungs. These findings identify that following cigarette smoke exposure, Aim2 is important for anti-Ly6G-mediated depletion of neutrophils, suppression of neutrophil recruitment and mediates activation of caspase-1 in neutrophils.


Assuntos
Fumar Cigarros , Neutrófilos , Animais , Caspase 1 , Fumar Cigarros/efeitos adversos , Proteínas de Ligação a DNA , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos
9.
Nutrients ; 13(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34960012

RESUMO

Maternal iron deficiency occurs in 40-50% of all pregnancies and is associated with an increased risk of respiratory disease and asthma in children. We used murine models to examine the effects of lower iron status during pregnancy on lung function, inflammation and structure, as well as its contribution to increased severity of asthma in the offspring. A low iron diet during pregnancy impairs lung function, increases airway inflammation, and alters lung structure in the absence and presence of experimental asthma. A low iron diet during pregnancy further increases these major disease features in offspring with experimental asthma. Importantly, a low iron diet increases neutrophilic inflammation, which is indicative of more severe disease, in asthma. Together, our data demonstrate that lower dietary iron and systemic deficiency during pregnancy can lead to physiological, immunological and anatomical changes in the lungs and airways of offspring that predispose to greater susceptibility to respiratory disease. These findings suggest that correcting iron deficiency in pregnancy using iron supplements may play an important role in preventing or reducing the severity of respiratory disease in offspring. They also highlight the utility of experimental models for understanding how iron status in pregnancy affects disease outcomes in offspring and provide a means for testing the efficacy of different iron supplements for preventing disease.


Assuntos
Deficiências de Ferro/complicações , Ferro/administração & dosagem , Doenças Respiratórias/etiologia , Animais , Colágeno/metabolismo , Proteínas Dietéticas do Ovo , Feminino , Inflamação/etiologia , Pulmão/crescimento & desenvolvimento , Pulmão/patologia , Fenômenos Fisiológicos da Nutrição Materna , Camundongos , Camundongos Endogâmicos BALB C , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Fenômenos Fisiológicos da Nutrição Pré-Natal
10.
Allergy ; 76(3): 714-734, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32762040

RESUMO

The prevalence of chronic immune and metabolic disorders is increasing rapidly. In particular, inflammatory bowel diseases, obesity, diabetes, asthma and chronic obstructive pulmonary disease have become major healthcare and economic burdens worldwide. Recent advances in microbiome research have led to significant discoveries of associative links between alterations in the microbiome and health, as well as these chronic supposedly noncommunicable, immune/metabolic disorders. Importantly, the interplay between diet, microbiome and the mucous barrier in these diseases has gained significant attention. Diet modulates the mucous barrier via alterations in gut microbiota, resulting in either disease onset/exacerbation due to a "poor" diet or protection against disease with a "healthy" diet. In addition, many mucosa-associated disorders possess a specific gut microbiome fingerprint associated with the composition of the mucous barrier, which is further influenced by host-microbiome and inter-microbial interactions, dietary choices, microbe immigration and antimicrobials. Our review focuses on the interactions of diet (macronutrients and micronutrients), gut microbiota and mucous barriers (gastrointestinal and respiratory tract) and their importance in the onset and/or progression of major immune/metabolic disorders. We also highlight the key mechanisms that could be targeted therapeutically to prevent and/or treat these disorders.


Assuntos
Microbioma Gastrointestinal , Doenças do Sistema Imunitário , Microbiota , Dieta , Trato Gastrointestinal , Humanos
11.
Respirology ; 22(1): 21-32, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27731525

RESUMO

COPD is a major cause of global mortality and morbidity but current treatments are poorly effective. This is because the underlying mechanisms that drive the development and progression of COPD are incompletely understood. Animal models of disease provide a valuable, ethically and economically viable experimental platform to examine these mechanisms and identify biomarkers that may be therapeutic targets that would facilitate the development of improved standard of care. Here, we review the different established animal models of COPD and the various aspects of disease pathophysiology that have been successfully recapitulated in these models including chronic lung inflammation, airway remodelling, emphysema and impaired lung function. Furthermore, some of the mechanistic features, and thus biomarkers and therapeutic targets of COPD identified in animal models are outlined. Some of the existing therapies that suppress some disease symptoms that were identified in animal models and are progressing towards therapeutic development have been outlined. Further studies of representative animal models of human COPD have the strong potential to identify new and effective therapeutic approaches for COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Remodelação das Vias Aéreas , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA